Neutrino oscillations and nonstandard neutrino-matter interactions (NSI)

A. Friedland, C.L. & Carlos Pena-Garay, Phys.Lett.B594:347,2004 (solar n.) A.Friedland, C.L. & M.Maltoni, PRD 70:111301, 2004 (atmospheric n.), A. Friedland, C.L., hep-ph/0506143

Contents

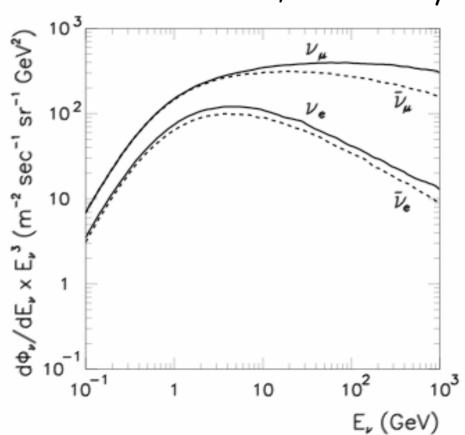
Neutrino oscillations and matter effects

- ** Non standard interactions (NSI)?
- # Testing NSI with oscillation experiments
 - Atmospheric neutrinos

Neutrino oscillations and matter effects

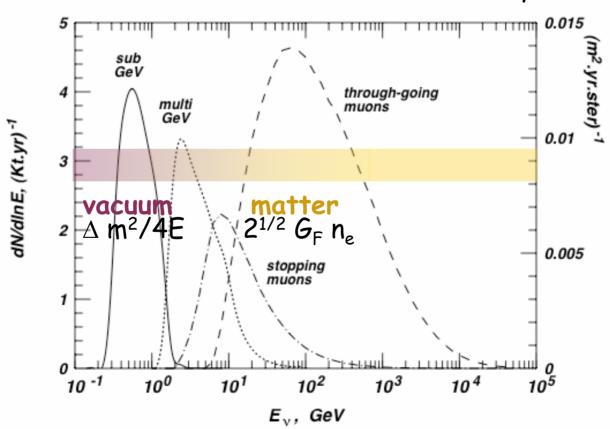
Atmospheric neutrinos as probes of neutrino interactions

From: M.C. Gonzalez Garcia and Y. Nir, Rev.Mod.Phys.75:345-402,2003



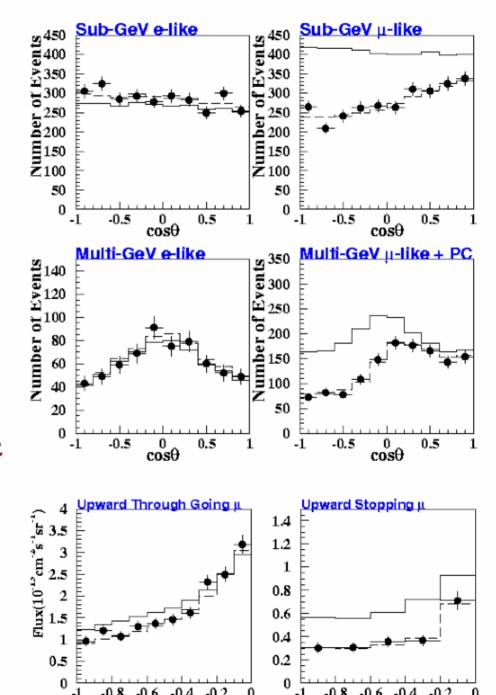
Event rates at SuperKamiokande

From: M.C. Gonzalez Garcia and Y. Nir, Rev.Mod.Phys.75:345-402,2003



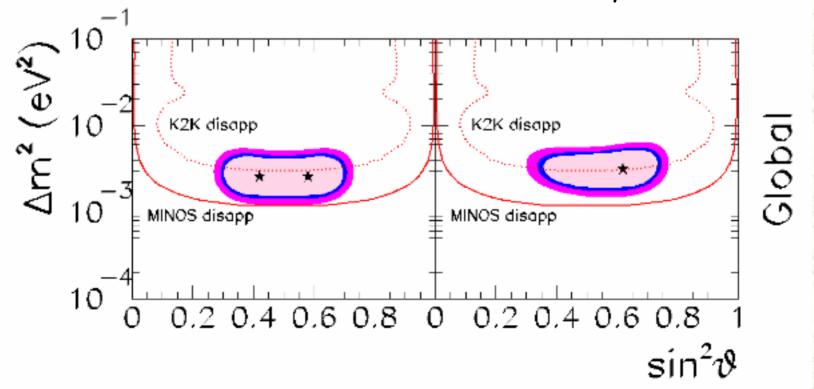
Zenith distribution

- * v_e, unsuppressed -> small v_e mixing (θ₁₃, bound from reactors)
- ν_μ has zenith dependence
 suppression -> large
 ν_μ ν_τ mixing



Results: $\theta \sim \pi/4$, $\Delta m^2 = 2.1 \ 10^{-3}$ eV²

From: M.C. Gonzalez Garcia and Y. Nir, Rev.Mod.Phys.75:345-402,2003



The Hamiltonian

2× 2 "effective vacuum"

$$v_e, v_\mu, v_\tau$$
 basis:

$$H_{eff} = \frac{\Delta m^2}{4E_{\nu}} \begin{pmatrix} -1 + \dots & \dots & \dots \\ -\cos 2\theta + \dots & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} + \sqrt{2}G_F N_e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Small corrections due to solar mass splitting (Δ m²_{sol} ~ 8 · 10⁻⁵ eV²) and mixing, and to θ_{13}

Non standard interactions?

Effects of NSI on neutrino oscillations

New interactions (NSI)

- # Predicted by physics beyond the standard model
- # Can be flavor-preserving or flavor violating
- # How large NSI?
 - Theory: most likely "small", but "large" values not impossible
 - Experiments: poor direct bounds from neutrinos (strong bounds from charged leptons not directly applicable because SU(2) is violated)

#The Lagrangian

$$L^{NSI} = -2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}\nu_{\beta})(\epsilon_{\alpha\beta}^{f\tilde{f}L}\bar{f}_L\gamma^{\rho}\tilde{f}_L + \epsilon_{\alpha\beta}^{f\tilde{f}R}\bar{f}_R\gamma^{\rho}\tilde{f}_R) + h.c. .$$

vertex	Current bound
$(ar{e}\gamma^{ ho}Pe)(ar{ u}_{ au}\gamma_{ ho}L u_{ au})$	ε ^{e P} _{τ τ} <0.5 LEP
$(ar{d}\gamma^{ ho}Pd)(ar{ u}_{ au}\gamma_{ ho}L u_{e})$	ε ^{d P} _{τe} <1.6 CHARM
$(\bar{u}\gamma^{ ho}Ru)(\bar{ u}_e\gamma_{ ho}L u_e)$	-0.4 <ε ^{u R} _{ee} < 0.7 CHARM

From: S. Davidson, C. Pena-Garay and N. Rius, JHEP 0303:011,2003

Phenomenological approach...

- # We want to test NSI in a 3-flavor context, with NSI in $e_{,\tau}$ sector
 - # The oscillation Hamiltonian

$$H_{eff} = \frac{\Delta m^2}{4E_{\nu}} \begin{pmatrix} -1 + \dots & \dots & \dots \\ & -\cos 2\theta + \dots & \sin 2\theta \\ & & \sin 2\theta & \cos 2\theta \end{pmatrix}$$

$$+ \sqrt{2}G_F N_e \begin{pmatrix} 1 + \epsilon_{ee} & \dots & \epsilon_{e\tau}^* \\ & \dots & 0 & \dots \\ & \epsilon_{e\tau} & \dots & \epsilon_{\tau\tau} \end{pmatrix} \quad \epsilon_{\alpha\beta} = \sum_{P,f} \epsilon_{\alpha\beta}^{ffP} N_e^{-1} N_e^{1} N_e^{-1} N_e^{-1} N_e^{-1} N_e^{-1} N_e^{-1} N_e^{-1} N_e^{-1}$$

Important differences...

- # If $\epsilon_{e\tau} \neq 0$, $H_{\underline{mat}}$ is <u>NOT flavor diagonal</u> -> conversion in the matter-dominated regime (high E)
- # If $\varepsilon_{\tau} \neq 0$, $\underline{v_{\mu}} \underline{v_{\tau}}$ oscillations are matteraffected -> suppression of mixing in the matter-dominated regime
- # v_e is coupled (mixed) to v_μ v_τ by interplay of $\epsilon_{e\,\tau}$ and θ

Testing NSI with oscillation experiments

What do we learn from atmospheric neutrinos?

- # What is the region of NSI allowed by the data?
- # Is this region interesting? More restricted than existing limits?
- # If NSI are there, maybe the values of Δ m² and θ are different from what we think?
- # Fully general analysis (3-neutrinos)?

"Predicting" the fit to data ...

Consider the Hamiltonian in the matter eigenbasis: $(v_2 = \cos\beta v_e + \sin\beta e^{i2\psi} v_{\tau}, ...)$

$$\frac{H}{\Delta} = \begin{pmatrix} -c_{\beta}^{2} + s_{\beta}^{2}c_{2\theta} + \frac{\lambda_{2}}{\Delta} & s_{\beta}s_{2\theta}e^{-2i\psi} & c_{\beta}s_{\beta}(1 + c_{2\theta})e^{-2i\psi} \\ s_{\beta}s_{2\theta}e^{2i\psi} & -c_{2\theta} & s_{2\theta}c_{\beta} \\ c_{\beta}s_{\beta}(1 + c_{2\theta})e^{2i\psi} & s_{2\theta}c_{\beta} & -s_{\beta}^{2} + c_{\beta}^{2}c_{2\theta} + \frac{\lambda_{1}}{\Delta} \end{pmatrix}$$

λ_2,λ_1 matter eigenvalues , $\Delta \equiv \Delta m^2_{32}/(4E)$

$$2\lambda_2 = 1 + \varepsilon_{ee} + \varepsilon_{\tau\tau} + \sqrt{(1 + \varepsilon_{ee} - \varepsilon_{\tau\tau})^2 + 4|\varepsilon_{e\tau}|^2}$$

$$2\lambda_{1} = 1 + \varepsilon_{ee} + \varepsilon_{\tau\tau} - \sqrt{(1 + \varepsilon_{ee} - \varepsilon_{\tau\tau})^{2} + 4|\varepsilon_{e\tau}|^{2}}$$

1. "Small" NSI should be OK ...

If $|\lambda_1|$, $|\lambda_2| << \Delta$, (-> $\beta \sim 0$), the standard case is recovered

$$\frac{H}{\Delta} = \begin{pmatrix} -c_{\beta}^{2} + s_{\beta}^{2}c_{2\theta} + \sum_{\Delta} s_{\beta}s_{2\theta}e^{-2i\psi} & c_{\beta}s_{\beta}(1 + c_{2\theta})e^{-2i\psi} \\ s_{\beta}s_{2\theta}e^{2i\psi} & -c_{2\theta} & s_{2\theta}c_{\beta} \\ c_{\beta}s_{\beta}(1 + c_{2\theta})e^{2i\psi} & s_{2\theta}c_{\beta} & -s_{\beta}^{2} + c_{\beta}^{2}c_{2\theta} + \sum_{\Delta} c_{\beta} c_{2\theta} \end{pmatrix}$$

2. "Large" NSI generally bad...

If $|\lambda_1|$, $|\lambda_2| >> \Delta$, v_{μ} oscillations are suppressed at high energy ->incompatible with data

$$\frac{H}{\Delta} = \begin{pmatrix} -c_{\beta}^{2} + s_{\beta}^{2}c_{2\theta} + \frac{\lambda_{2}}{\Delta} & s_{\beta}s_{2\theta}e^{-2i\psi} & c_{\beta}s_{\beta}(1 + c_{2\theta})e^{-2i\psi} \\ s_{\beta}s_{2\theta}e^{2i\psi} & -c_{2\theta} & s_{2\theta}c_{\beta} \\ c_{\beta}s_{\beta}(1 + c_{2\theta})e^{2i\psi} & s_{2\theta}c_{\beta} & -s_{\beta}^{2} + c_{\beta}^{2}c_{2\theta} + \frac{\lambda_{1}}{\Delta} \end{pmatrix}$$

3. With an exception!

 $\begin{array}{l} \text{# If } |\lambda_2| >> \Delta \text{, AND } |\lambda_1| << \Delta \text{, } \nu_\mu \text{ oscillations} \\ \text{are NOT suppressed at high energy:} \\ \nu_\mu \leftrightarrow \nu_1 \text{ oscillations.} \end{array}$

$$\frac{H}{\Delta} = \begin{pmatrix} -c_{\beta}^2 + s_{\beta}^2 c_{2\theta} + \frac{\lambda_2}{\Delta} & s_{\beta} s_{2\theta} e^{-2i\psi} & c_{\beta} s_{\beta} (1 + c_{2\theta}) e^{-2i\psi} \\ s_{\beta} s_{2\theta} e^{2i\psi} & -c_{2\theta} & s_{2\theta} c_{\beta} \\ c_{\beta} s_{\beta} (1 + c_{2\theta}) e^{2i\psi} & s_{2\theta} c_{\beta} & -s_{\beta}^2 + c_{\beta}^2 c_{2\theta} + \frac{\lambda_1}{\Delta} \end{pmatrix}$$
Suppression; reduction to 2 neutrinos

Why does this work?

Right pattern of v_{μ} disappearance at high energy (E ~ 5 -100 GeV)

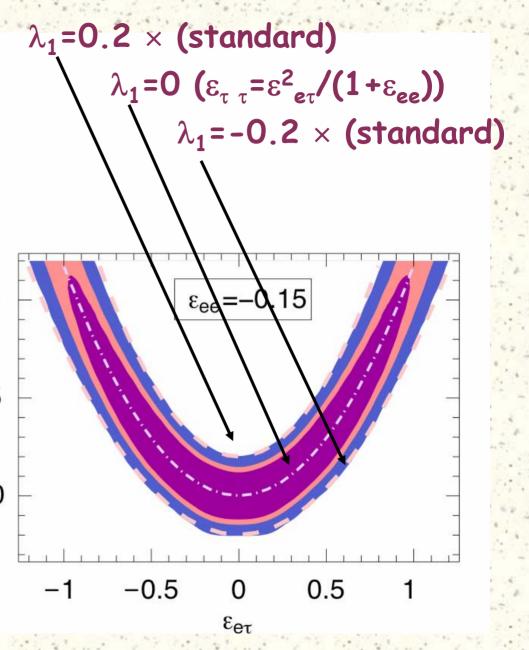
Similar to standard at lower energy (vacuum terms dominate)

The χ^2 test

- # Parameters: Δ m², θ , ϵ_{ee} , $\epsilon_{e\tau}$, , $\epsilon_{\tau\tau}$ per electron
- # Data: K2K (accelerator) + 1489 days SuperKamiokande-I , 55 d.o.f.
 - μ, e contained
 - = Stopping and through going muons
- # New 3D fluxes by Honda et al. (astro-ph/0404457)

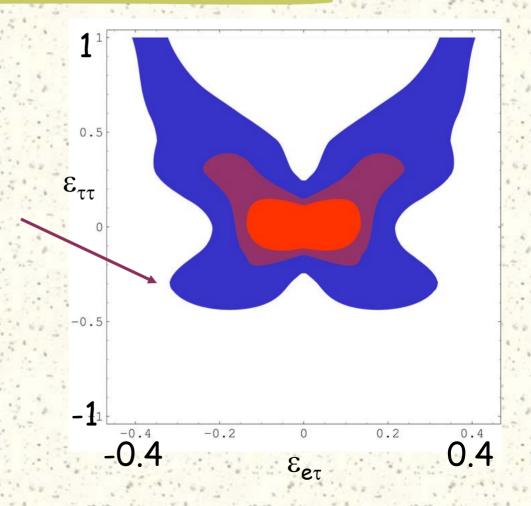
A "smile"...

- * Section of 3D region at $\epsilon_{e\epsilon}$ =-0.15 (others marginalized); inverted hierarchy
- χ^2_{min} =48.50 for no NSI
- # Contours: $\xi_{\tau\tau}$ 0.5 $\chi^2 \chi^2_{min} = 7.81$, 11.35, 18.80 (95%, 99%, 3.6 σ)



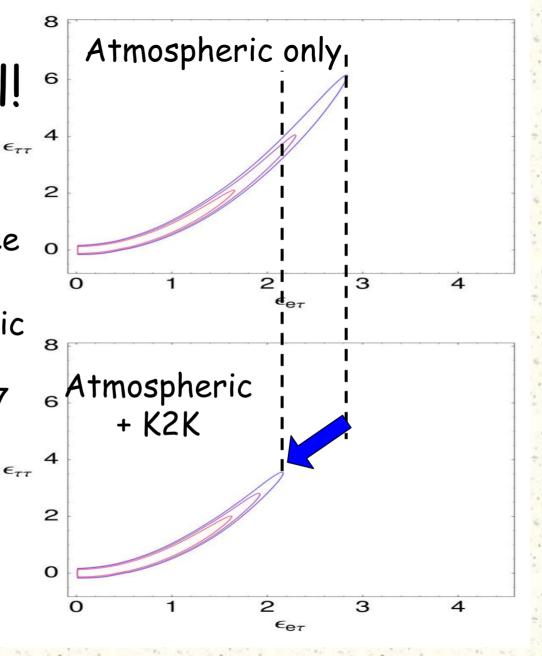
And a butterfly

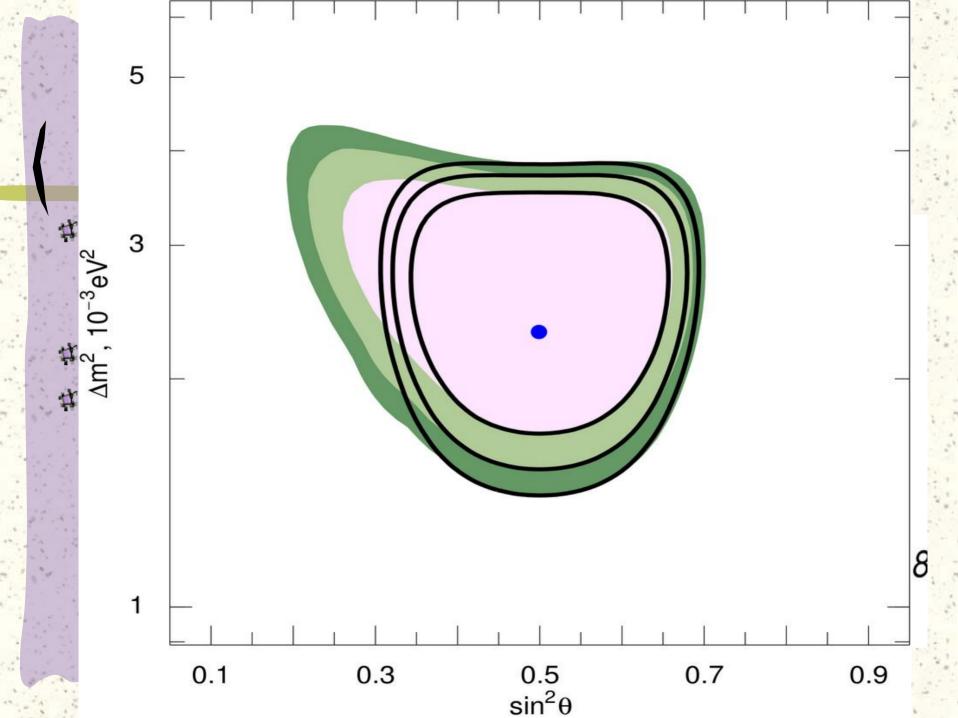
- # Section of 3D region at $\epsilon_{e\epsilon}$ =-1
- # Transition to case $|\lambda_2| \ll \Delta$, AND $|\lambda_1| >> \Delta$



K2K crucial!

- # K2K matter-free
- # Consistency K2K/atmospheric
 - $\rightarrow \theta \sim \theta_{\rm m} \sim \pi/4$
 - \rightarrow cos β > \sim 0.47

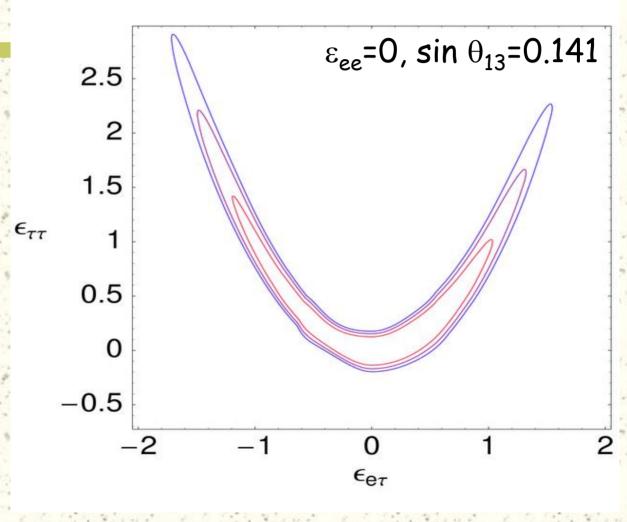




Taking into account NSI:

- # Mixing in matter maximal ($\theta_{eff} = \pi/4$) -> smaller vacuum mixing: $\theta < \pi/4$
- # Oscillation length in matter (zenith dependence) require Δ m²_{eff} = 2.2 · 10⁻³ eV -> larger Δ m²: Δ m² = 2.6 2.8 · 10⁻³ eV

θ_{13} makes an asymmetric smile



Comments & open issues

- # Surprise! <u>Atmospheric neutrinos allow large NSI</u> in the e- τ sector)
- "zeroth" order effects are (surprisingly!) well predicted by analytics
- # Subdominant effects calculable (in part): θ_{13} , "solar" parameters, $\epsilon_{\mu\tau}$, 3-neutrino effects,...

What NSI are compatible with everything?

 Combine with solar neutrinos? Smile becomes restricted and asymmetric; "large" NSI still allowed (work in progress)

- # How to test the $e-\tau$ NSI?
 - Minos, LBL experiments, supernovae...

Conclusions

- * Neutrino oscillations experiments put competitive constraints on NSI
- # Atmospheric neutrinos allow large NSI in the e τ sector, along the parabolic direction $|\lambda_2| >> \Delta$, AND $|\lambda_1| << \Delta$ $(|\lambda_2| << \Delta$, AND $|\lambda_1| >> \Delta)$
- # NSI at the allowed level can change the vacuum parameters extracted from the data by (at least) few 10%.
- # They can be tested with neutrino beams (intermediate and long base lines)

Solar neutrinos: a new solution!

LMA-0 : Day/Night suppressed by $(\theta - \alpha) \simeq 0.15$

